T-Trefftz Voronoi Cell Finite Elements with Elastic/Rigid Inclusions or Voids for Micromechanical Analysis of Composite and Porous Materials

نویسندگان

  • L. Dong
  • S. N. Atluri
چکیده

In this paper, we develop T-Trefftz Voronoi Cell Finite Elements (VCFEM-TTs) for micromechanical modeling of composite and porous materials. In addition to a homogenous matrix in each polygon-shaped element, three types of arbitrarily-shaped heterogeneities are considered in each element: an elastic inclusion, a rigid inclusion, or a void. In all of these three cases, an inter-element compatible displacement field is assumed along the element outer-boundary, and interior displacement fields in the matrix as well as in the inclusion are independently assumed as T-Trefftz trial functions. Characteristic lengths are used for each element to scale the T-Trefftz trial functions, in order to avoid solving systems of ill-conditioned equations. Two approaches for developing element stiffness matrices are used. The differences between these two approaches are that, the compatibility between the independently assumed fields at the outeras well as the innerboundary, are enforced alternatively, by Lagrange multipliers in multi-field boundary variational principles, or by collocation at a finite number of preselected points. Following a previous paper of the authors, these elements are denoted as VCFEMTT-BVP and VCFEM-TT-C respectively. Several two dimensional problems are solved using these elements, and the results are compared to analytical solutions and that of VCFEM-HS-PCE developed by [Ghosh and Mallett (1994); Ghosh, Lee and Moorthy (1995)]. Computational results demonstrate that VCFEM-TTs developed in this study are much more efficient than VCFEM-HS-PCE developed by Ghosh, et al., because domain integrations are avoided in VCFEM-TTs. In addition, the accuracy of stress fields computed by VCFEM-HS-PCE by [Ghosh and Mallett (1994); Ghosh, Lee and Moorthy (1995)] seem to be very poor as compared to analytical solutions, because the polynomial Airy stress function is highly incomplete for problems in a doubly-connected domain (as in this case, when a inclusion or a void is present in the element). However, the results of VCFEM-TTs 1 Department of Civil & Environmental Engineering, University of California, Irvine, [email protected] 2 Center for Aerospace Research & Education, University of California, Irvine 184 Copyright © 2012 Tech Science Press CMES, vol.83, no.2, pp.183-219, 2012 developed in the present paper are very accurate, because, the compete T-Trefftz trial functions derived from positive and negative power complex potentials are able to model the singular nature of these stress concentration problems. Finally, out of these two methods, VCFEM-TT-C is very simple, efficient, and does not suffer from LBB conditions. Because it is almost impossible to satisfy LBB conditions a priori, we consider VCFEM-TT-C to be very useful for ground-breaking studies in micromechanical modeling of composite and porous materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of 3D T-Trefftz Voronoi Cell Finite Elements with/without Spherical Voids &/or Elastic/Rigid Inclusions for Micromechanical Modeling of Heterogeneous Materials

In this paper, three-dimensionalT-Trefftz Voronoi Cell Finite Elements (VCFEM-TTs) are developed for micromechanical modeling of heterogeneous materials. Several types of VCFEMs are developed, depending on the types of heterogeneity in each element. Each VCFEM can include alternatively a spherical void, a spherical elastic inclusion, a spherical rigid inclusion, or no voids/inclusions at all.In...

متن کامل

Development of T-Trefftz Four-Node Quadrilateral and Voronoi Cell Finite Elements for Macro- & Micromechanical Modeling of Solids

In this paper, we explore three different ways of developing T-Trefftz finite elements of quadrilateral as well as polygonal shapes. In all of these three approaches, in addition to assuming an inter-element compatible displacement field along the element boundary, an interior displacement field for each element is independently assumed as a linear combination of T-Trefftz trial functions. In a...

متن کامل

SGBEM Voronoi Cells (SVCs), with Embedded Arbitrary-Shaped Inclusions, Voids, and/or Cracks, for Micromechanical Modeling of Heterogeneous Materials

In this study,SGBEM Voronoi Cells (SVCs), with each cell representing a grain of the material at the micro-level, are developed for direct micromechanical numerical modeling of heterogeneous composites. Each SVC can consist of either a (each with a different) homogenous isotropic matrix, and can include micro-inhomogeneities such as inclusions, voids of a different material, and cracks. These i...

متن کامل

A Simple Multi-Source-Point Trefftz Method for Solving Direct/Inverse SHM Problems of Plane Elasticity in Arbitrary Multiply-Connected Domains

In this paper, a generalized Trefftz method in plane elasticity is developed, for solving problems in an arbitrary multiply connected domain. Firstly, the relations between Trefftz basis functions from different source points are discussed, by using the binomial theorem and the logarithmic binomial theorem. Based on these theorems, we clearly explain the relation between the T-Trefftz and the F...

متن کامل

A micromechanics-enhanced finite element formulation for modelling heterogeneous materials

In the analysis of composite materials with heterogeneous microstructures, full resolution of the heterogeneities using classical numerical approaches can be computationally prohibitive. This paper presents a micromechanics-enhanced finite element formulation that accurately captures the mechanical behaviour of heterogeneous materials in a computationally efficient manner. The strategy exploits...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012